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We start by computing the transverse electric field for a beam of uniform charge
distribution in a radius r a≤  tranvelling in the center of a beam pipe of radius b.  The
transverse electric field is:
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from which one finds the scalar potential at the center of the beam:
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We now assume that the potential is given by a similar formula when ρ ρ0 0= ( )z :
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The beam is assumed to be moving at a uniform velocity βc, and the vector potential is
related to the scalar potential

A z
c
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From this one finds
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This is the space charge force.  It acts continuously over the ring circumference, but is
approximately equal to a voltage kick given once per turn at the rf cavities which is equal to



V z E z C( ) = ( )ρ , [6]

where C is the circumference of the accelerator.

So the procedure is to compute ρ z( ) numerically based on the particle distribution.  I
would guess that one might need about 10 bins per rf bucket to get a reasonable idea of the
space charge force.  One would fit a smooth function to the binned distribution and
compute the derivative.  The smoothed function ρ z( ) can also be used to simulate feed-
forward technique.  The simplest method is to apply ρ z( ) to the cavity after a one turn
delay.


